API BDE using Python

Central Bank of Chile, June 10, 2020

How to access the CBC Statistics Database
Introduction

This Notebook will explain how to access data from the Bank’s Statistics Database (BDE) using
Python.

Access to documents and forms:
https://si3.bcentral.cl/estadisticas/Principall /Web_ Services/index.htm

To access the data using the API, you must request access credentials (username and password)
by send an email to contacto_ws@bcentral.cl , and fill this: Form

Example
How to get a dataframe that will include:

e Time series ID
o Frequency and English name (obtained from the Webservice “SearchSeries”)
o Data existing within a date range (obtained from the Webservice “GetSeries”)

Requirements

o Internet access

« Basic knowledge of Python3

o Access credentials (user and password)

o Start date (string format yyyy-mm-dd, e.g., “2017-01-01”)
o End date (string format yyyy-mm-dd, e.g., “2019-01-01")
e List of Series IDs to request

The Bank provides two Webservices that contain the needed information to prepare the aforemen-
tioned dataframe:

SearchSeries

Using a user, password and a frequency (“Daily”,“Monthly”,“Quarterly” or “Annual”),

it returns a dataframe with the time series corresponding to the desired frequency (for example,
for all the annual time series) with the following fields:

o Seriesld

e Frequency

e FrequencyCode
e Observed

e ObservedCode
e SpanishTitle

https://si3.bcentral.cl/estadisticas/Principal1/Web_Services/Webservices/registro_y_condiciones_de_uso.pdf

[1]:

o EnglishTitle

o firstObservation
¢ lastObservation
o updatedAt

o createdAt

GetSeries

Using a user, password, start date, end date and a time series ID), it returns a dataframe with
the available data between start date and end date for the requested time series ID. Formally,

the request will return the following fields:

o IndexDateString
o KeyFamilyld

o LastModified

o LastModifiedUser
e Seriesld

o DataStage

o Exists

e Description

e Descriplng

e DescripEsp

e StatusCode

o Value

In particular, this exercise will use the fields “indexDateString

MW

, “seriesKey” and “value”.

Next, needed modules to implement the code will be imported. In case of an error in the next cell,

please verify the installation:

1.

#Importing the necessary modules

#Generating the connection with the Webservice
import zeep

#Used to work with Dataframes

import pandas as pd

#Used to work with the data sent by the Webservice
from zeep.helpers import serialize_object

#Used to sort the dates of the observations
import datetime as dt

#Used to work with arrays

import numpy as np

#Allows the program to wait a certain period of
#time before performing a nmew request

from time import sleep

#0n the event of an error, stops the execution
import sys

Then, the inputs to use are defined:

[2]:

[3]:

2.
#Inputs creation for the connection with the Webservice

user="user"
pw="password"

fInic="2017-12-31"
fFin="2019-12-31"

#This exercise will request 2 time series:
- 'Monetary policy rate (MPR) (percentage)'
- 'Observed US Dollar Exchange Rate'

Whose IDs are, respectively:
series=["F022.TPM.TIN.DOO1.NO.Z.D","F073.TCO.PRE.Z.M"]

series=[x.upper() for x in series]
print(series)

['FO22.TPM.TIN.DOO1.NO.Z.D', 'FO73.TCO.PRE.Z.M']

A catalogue with the available time series <can be downloaded from:
https://si3.bcentral.cl/estadisticas/Principall /Web__Services/Webservices/series.xls

The code below reviews the validity of the entered time series IDs. After this, the variables needed
are assigned to make the first query to the “SearchSeries” service. In order to make the query more

efficient, the different frequencies in series are requested only once:

3.
#It checks for an invalid ID. All of them should end in d, m, t, or a,

— (corresponding to the frequencies). If an ID is invalid, the user is,
—notified and the ID is removed from the list
for ser_cod in reversed(series):
if ser_cod[-1] in ["D","M","T","A"]:
pass

else:
print("Serie " + ser_cod + " inexistente. Chequea el cbédigo")

series.remove(ser_cod)

#The different frequencies of the time series are tdentified and classified by,
—type

series_freq=[x[-1] for x in series]

series_freq=list(np.unique(series_freq))

#series_freq is the list that will contain the unique frequency values

print(series_freq)

#Now, the initial is replaced by the name of the frequency, which is needed toy
—create the request
for x in range(len(series_freq)):

if series_freq[x]=="D":
series_freq[x]=series_freq[x] .replace("D","DAILY")
elif series_freq[x]=="M":
series_freq[x]=series_freq[x].replace("M","MONTHLY")
elif series_freq[x]=="T":
series_freq[x]=series_freq[x].replace("T","QUARTERLY")
elif series_freq[x]=="A":
series_freq[x]=series_freq[x].replace("A","ANNUAL")
else:
pass
print(series_freq)

[IDI’ 'M']
['DAILY', 'MONTHLY']

In the next code the request to the Webservice “SearchSeries” is performed. Please notice that the
obtained result shows only the variables of interest (“seriesld”,“frequency”,“englishTitle”):

[41: # 4.

#The WSDL (Web Service Definition Language) address is defined, which willy
—allow the zeep library to tdentify which queries can be made to the,
—Webservice, in addition to generate the client object, that will allow datay,
—exchange

wsdl="https://si3.bcentral.cl/SieteWS/SieteWS.asmx?wsdl"

client = zeep.Client (wsdl)

#meta_series will contain the downloaded data obtained from "SearchSeries" for,
—all frequencies
meta_series=pd.DataFrame ()

#Iterates through the list series_freq to request the different frequencies ofy
—interest:
for frequ in series_freq:
for attempt in range(4):
try:
#The request is performed operating the user, password and frequency
res_search=client.service.SearchSeries(user,pw,frequ)
#Cleaning the information
res_search=res_search["SeriesInfos"] ["internetSeriesInfo"]
res_search = serialize_object(res_search)
#A dictionary is created, using the downloaded time series metadatay,
< (title, time series ID and frequency)
res_search = { serie_dict['seriesId']:
—[serie_dict['englishTitle'],serie_dict['frequency']] for serie_dict in
—res_search }

#Using the previous dictionary, a dataframe (meta_series_auzx) sy
—created and then added to the dataframe that will contain all they,
< frequencies (meta_series)
meta_series_aux=pd.DataFrame.from_dict(res_search,orient='index')
meta_series=meta_series.append(meta_series_aux)
print ("Frequency " + str(frequ) + " found. Adding")
break
except:
print("Attempt " + str(attempt) + ": The frequency " + str(frequ) +,
" was not found")
#0n the event of an error, the function waits 20 seconds before,
—performing a new request on the frequency
sleep(20)
else:
print("Frequency " + str(frequ) + " was not found. Stopping execution")
sys.exit("Stopping execution")

#Finally, the obtained Dataframe is cleaned to keep only the series of interest:
meta_series=meta_series.loc[series]
meta_series.columns=["englishTitle","frequency"]

print(meta_series)

Frequency DAILY found. Adding
Frequency MONTHLY found. Adding

englishTitle frequency
F022.TPM.TIN.DOO1.NO.Z.D Monetary policy rate (MPR) (percentage) DAILY
FO73.TCO.PRE.Z.M Observed US Dollar Exchange Rate MONTHLY

The result of the execution of the previous code is the variable meta_ series, a dataframe where
each of its rows corresponds to a time series ID and its columns contain the variables “englishTitle”
and “frequency”. In the next code the request to the Webservice “GetSeries” is performed.

[5]: # 5.
#Creation of the DataFrame values_df, that will contain the numeric data of all,
—the requested time series
values_df=pd.DataFrame ()
#Iterates inside the list series to request the numeric data:
for serieee in series:
#A loop is generated to perform 4 request attempts per time series. If it
—1s successful, it continues with the next time series
for attempt in range(4):
try:
#Creation of the object that will contain the times series ID L

Array0fString = client.get_type('nsO:Array0fString')
value = Array0fString(serieee)

#The request is performed using the parameters (user, password,
—start date, end date and time series ID) The response is saved in the,
—wvartable result
result = client.service.GetSeries(user,pw,fInic,fFin, value)
#If there are no observations in the defined date range, the time,
—series 15 omitted
if result["Series"]["fameSeries"][0] ["obs"]==[]:
print("Time series "+ str(serieee) + " does not have data for
—the requested time range. Omitting")
break
#The tnformation obtained ts cleaned, leaving the time sertes ID as,
—the row name and, as columns, the dates (dd-mm-yyyy)
result = serialize_object(result["Series"] ["fameSeries"] [0] ["obs"])
result=pd.DataFrame(result) .T
result.columns=result.iloc[O0, :]
result=result.drop(result.index[0:3],axis=0)
result.index=[serieee]

#The data %s added to the DataFrame values_df

values_df=values_df.append(result,sort=True)
print("Time series " + str(serieee) + " found. Adding")
break
except:
print ("Attempt " + str(attempt) + ": The time series " +
—str(serieee) + " was not found")
#0n the event of an error, the function waits 20 seconds before,
—performing a new request on the ID
sleep(20)
else:
print("The time series " + str(serieee) + " was not founnd. Omitting")

Time series F022.TPM.TIN.DOO1.NO.Z.D found. Adding
Time series FO73.TCO.PRE.Z.M found. Adding

The last section of this tutorial checks if the numeric data are sorted by date (oldest to newest)
and join them, in a dictionary called final dic, with the metadata extracted previously.

[6]: # 6.
#new_col contains the columns names of wvalues_df
new_col=list(values_df.columns)
#The dates im mew_col are sorted from oldest to newest
new_col.sort(key = lambda date: dt.datetime.strptime(date, '%d-%m-%Y'))
#The dataframe values_df ts sorted using the wvariable new_col
values_df=values_df [new_col]
#meta_series is joined with values_df. The result is saved in final_dzc
final_dic=pd.merge(meta_series,values_df,left_index=True,right_index=True)

#final_dic 1s splitted to obtain a dataframe by frequency

final_dic = dict(iter(final_dic.groupby('frequency')))

final_dic.update((x, y.dropna(axis=1,how="all")) for x, y in final_dic.items())
#The result of final_dic ts printed

print(final_dic)

{'DAILY"': englishTitle
frequency \
F022.TPM.TIN.DOO1.NO.Z.D Monetary policy rate (MPR) (percentage) DAILY

02-01-2018 03-01-2018 04-01-2018 05-01-2018 \

FO022.TPM.TIN.DOO1.NO.Z.D 2.5 2.5 2.5 2.5
08-01-2018 09-01-2018 10-01-2018 11-01-2018 .. \
F022.TPM.TIN.DOO1.NO.Z.D 2.5 2.5 2.5 2.5

17-12-2019 18-12-2019 19-12-2019 20-12-2019 \
F022.TPM.TIN.DOO1.NO.Z.D 1.75 1.75 1.75 1.75

23-12-2019 24-12-2019 26-12-2019 27-12-2019 \
F022.TPM.TIN.DOO1.NO.Z.D 1.75 1.75 1.75 1.75

30-12-2019 31-12-2019
F022.TPM.TIN.DOO1.NO.Z.D 1.75 1.75

[1 rows x 497 columns], 'MONTHLY':
englishTitle frequency 01-12-2017 \
FO73.TCO.PRE.Z.M O0Observed US Dollar Exchange Rate MONTHLY 636.924

01-01-2018 01-02-2018 01-03-2018 01-04-2018 01-05-2018 \
FO73.TCO.PRE.Z.M 605.529 596.839 603.445 600.548 626.119

01-06-2018 01-07-2018 .. 01-03-2019 01-04-2019 01-05-2019 \
FO73.TCO.PRE.Z.M 636.146 652.407 .. 667.679 667.399 692.004

01-06-2019 01-07-2019 01-08-2019 01-09-2019 01-10-2019 \
FO73.TCO.PRE.Z.M 692.409 686.06 713.703 718.442 721.032

01-11-2019 01-12-2019
FO73.TCO.PRE.Z.M 776.53 770.39

[1 rows x 27 columns]}

This is the final result of this tutorial: A dictionary of dataframes by frequency. These dataframes
contain, by row, a time series ID, name, frequency and the observations between the date range
specified. To include more time series, just add the time series ID, as a string, to the list “series”,
defined in the second section. Also, if a different date range is needed, just re-define fInic and fFin.

This code is also included as a function, to immediately start downloading data from the BDE.

According to the terms and conditions of use of the Webservice, the user may require a maximum
of 5 time series per second, corresponding to 5 requests to the Webservice, for each authorized
user, regardless of the IP address or addresses sending the requests.

